(代轉發)【敬邀】1/25 時代專場演講_Super-thermal Light-enabled Evaporation without Heat
消息來源:時代基金會
截止日期:2024-01-19

代轉知檢附時代基金會於125()邀請MIT機械工程學系前系主任Prof. Gang Chen (陳剛教授)來台以「Super-thermal Light-enabled Evaporation without Heat」為題,進行專題演講,分享其最新研究—光分子效應,歡迎轉知所屬教師同仁卓參。
 
時代基金會本次保留3名,因名額考量煩請以教師優先,若有意願參加,請於 119()中午前填具附檔表格資料後回覆本校聯絡人張院長(電資學院院辦公室)-eecs@ntu.edu.tw
或若有需要請與我們聯繫(33663501)😊
 
隨著氣候變遷加劇,全球未來面臨水資源及能源危機的頻率也將隨之增加MIT最新技術運用光分子效應 (photomolecular effect),來達成水蒸發的效果。此發明將影響再生能源儲存、冷卻系統、海水淡化、農業灌溉、氣象學、食品及製藥等產業。
 
本會將邀請MIT機械工程學系前系主任Prof. Gang Chen (陳剛教授)來台,於125()以「Super-thermal Light-enabled Evaporation without Heat」為題,進行專題演講,分享其最新研究—光分子效應。
 
本會會員企業享3席名額,本場次報名踴躍,席次有限,請盡早報名。如 貴公司將釋放名額,也請不吝通知。隨函謹附教授簡介、演講議程與報名表格,歡迎踴躍參與。
 
【講者介紹】
Prof. Gang Chen (陳剛教授2013年至2018年曾任MIT機械工程學系主任,同時為美國國家科學院、工程院暨台灣中央研究院三院士。陳教授主要研究領域為奈米傳熱與能源技術,立方砷化硼研究 (cubic boron arsenide) 是半導體材料的一大突破,未來有望取代矽材料,為電子產業帶來新變革。陳教授獲獎無數,包含NSF Young Investigator AwardR&D 100 AwardASME Heat Transfer Memorial Award以及ASME Frank Kreith Award in Energy等獎項。
 
Special Epoch Webinar Series
時間: 25  () 15:00 - 16:00 (台北時間)
地點:Garage+ (台北市中山區中山北路二段96號後棟9918)
報名:請報名或回傳報名表格
備註:時代基金會保留變更、審核活動資格之權利
 
演講題目:Super-thermal Light-Enabled Evaporation without Heat
演講大綱:
In this talk, I will start with a brief summary of our past work on thermal materials: from high thermal conductivity polymers to the discovery of best semiconductors, and then turn attention to my current research focus on light-water interaction leading to the discovery of photomolecular effect.  In recent years, experiments from different groups have reported that evaporation under sunlight from hydrogel and other porous materials can exceed the thermal evaporation limit by several times, i.e., super-thermal.  We hypothesize that photons can directly cleave off water clusters at the liquid-vapor interface in a way similar to the photoelectric effect, which we call the photomolecular effect.  We carried out ~20 different experiments on both hydrogel and water-air interface to demonstrate this effect.  We further demonstrate that visible light heats up a thin layer of fog, with temperature rise peaking at the green wavelength, and hence we believe that the photomolecular effect explains an 80-year puzzle in atmospheric science that clouds absorb more sunlight than current theory predicts. Our study suggests that the photomolecular effect should happen widely in nature, from clouds to fogs, ocean to soil surfaces, and plant transpiration, and can also lead to new applications in energy and clear water.